Convergence of Block Lanczos Method for Eigenvalue Clusters

نویسندگان

  • Ren-Cang Li
  • Lei-Hong Zhang
چکیده

The Lanczos method is often used to solve a large and sparse symmetric matrix eigenvalue problem. It is well-known that the single-vector Lanczos method can only find one copy of any multiple eigenvalue. To compute all or some of the copies of a multiple eigenvalue, one has to use the block Lanczos method which is also known to compute clustered eigenvalues much faster than the single-vector Lanczos method. Existing convergence theory due to Saad for the block Lanczos method, however, does not fully reflect this phenomenon due to that the theory was established to bound approximation errors in each individual approximate eigenpairs. It is argued that in the presence of an eigenvalue cluster, the entire approximate eigenspace associated with the cluster should be considered as a whole, instead of each individual approximate eigenvectors, and likewise for approximating the cluster of eigenvalues. In this paper, we obtain error bounds on approximating eigenspaces and eigenvalue clusters. Our bounds are much sharper than the existing ones and expose more realistic rates of convergence of the block Lanczos method towards eigenvalue clusters. Numerical examples are presented to support our claims. Also a possible extension to the generalized eigenvalue problem is outlined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of the block Lanczos method for eigenvalue clusters

The Lanczos method is often used to solve a large scale symmetric matrix eigen-value problem. It is well-known that the single-vector Lanczos method can only find one copy of any multiple eigenvalue and encounters slow convergence towards clustered eigenvalues. On the other hand, the block Lanczos method can compute all or some of the copies of a multiple eigenvalue and, with a suitable block s...

متن کامل

ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems

This work presents an adaptive block Lanczos method for large-scale non-Hermitian Eigenvalue problems (henceforth the ABLE method). The ABLE method is a block version of the non-Hermitian Lanczos algorithm. There are three innovations. First, an adaptive blocksize scheme cures (near) breakdown and adapts the blocksize to the order of multiple or clustered eigenvalues. Second, stopping criteria ...

متن کامل

Efficient Computation of the Maximum Eigenvalue of Large Symmetric Matrices

Though the implicitly restarted Arnoldi/Lanczos method in ARPACK is a reliable method for computing a few eigenvalues of large-scale matrices, it can be inefficient because it only checks for convergence at restarts. Significant savings in runtime can be obtained by checking convergence at each Lanczos iteration. We describe a new convergence test for the maximum eigenvalue that is numerically ...

متن کامل

Sharpness in rates of convergence for the symmetric Lanczos method

The Lanczos method is often used to solve a large and sparse symmetric matrix eigenvalue problem. There is a well-established convergence theory that produces bounds to predict the rates of convergence good for a few extreme eigenpairs. These bounds suggest at least linear convergence in terms of the number of Lanczos steps, assuming there are gaps between individual eigenvalues. In practice, o...

متن کامل

Improved Analyses of the Randomized Power Method and Block Lanczos Method

The power method and block Lanczos method are popular numerical algorithms for computing the truncated singular value decomposition (SVD) and eigenvalue decomposition problems. Especially in the literature of randomized numerical linear algebra, the power method is widely applied to improve the quality of randomized sketching, and relative-error bounds have been well established. Recently, Musc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998